Exam. Code : 103206

Subject Code: 1396 Sectional Euro Squestion carries

B.A./B.Sc. Semester—VI

CHEMISTRY

(Organic Chemistry—IV)

Time Allowed—3 Hours] [Maximum Marks—35

PART—A (Compulsory)

Note: - Attempt ALL questions. Each question carries 1 mark.

- Differentiate between au ochro ne and chromophore giving examples.
- What are mercaptans? Why are they named so? 2.
- What do you mean by vulcanization of rubber? 3.
- What is Schweitzer's reagent? Give its importance. 4.
- Write the name and draw the structure of ar no acid 5. having secondary nitrogen atom.
- 6. Is diethyl malonic ester acidic? Support your answer with proper reasoning.
- 7. Define Lambert-Beer law.
- What are relaxation processes? Explain. $1 \times 8 = 8$

2797(2416)/OFV-49333

(Contd.)

PART-B

Note:—Attempt any TWO questions from each of the following Sections. Each question carries 4½ marks.

SECTION—I

- 9. (2) Define: (Define: (
 - Hook's law
 - (ii) Equivalent and non-equivalent protons
 - (iii) Ferni resonance.

3

- (b) Discuss the significance of finger print region in IR.
- 10. (a) Why acetylenic protons absorb upfield as compared to vinylic protons in proton NMR?
 - (b) An organic compound having molecular formula C₉H₁₁Br showed the following peaks in NMR spectra: δ 2.15 (m, 2H), 2.75 (t, 2H), 3.28 (t, 2H) and 7.22 (s, 5H).

Assign suitable structure to the compound giving justification. 2.5

11. Calculate λ_{max} for the following compounds:

2797(2416)/QFV-49333

2

(Contd.)

(iii)
$$H_3C$$
 $C=CH_2$
 CH_3
 $C=CH_2$
 CH_3
 $C=CH_2$
 CH_3

SECTION—II

- 12. (a) Write a short note on Zeigler Natta polymerization.

 What are its advantages over the free radical polymerization?

 2.5
 - (b) How will you prepare:
 - (i) 2-Methylpropanoic acid trom malonic ester
 - (ii) Acetyl acetone from ethyl acetoacetate? 2
- 13. An organic compound having molecular formula C₈H₁₀ shows the following spectral data:

UV: $\lambda_{max} 262 \text{ nm}$

IR : 3070-3035, 2970-2860, 1610, 1500, 750

NMR: δ 1.20 (t, 3H), 2.60 (q, 2H), 7.10 (s, 5H)

Elucidate its structure. 4.5

2797(2416)/QFV-49333

3

Contd.)

14.	(a)	Explain keto-enol tautomerism in ethyl acetoacetate. How will you separate them through aseptic distillation? 1.5
	(3)	What happens when benzene sulphonic acid is treated with:
		6) Oleum
		(E) Conc. HNO ₃ /conc. H ₂ SO ₄
		(iii) Rr_2/Fe ?
		SECTION—III
15.	Writ	te notes on :
	(a)	Secondary structure of proteins
	(b)	Kiliani-Fischer synthe. is
	(c)	Zwitterion structure of a anno acids. 1.5 each
16.	(a)	Why glucose and fructose give the same osazone? Discuss modern mechanism of osazone formation.
	(b)	Write a short note on classification of monosaccharides. 2.5
17.	(a)	How will you prepare α -amino acids using Gabriel's phthalimide synthesis?
	(b)	Give a brief account on the double helix structure of DNA. 2.5